A Novel Approach to Recognition of the Isolated Persian Characters using Decision Tree
نویسنده
چکیده
Optical Character Recognition (OCR) is an area of research that has attracted the interest of researchers for the past forty years. Although the subject has been the center topic for many researchers for years, it remains one of the most challenging and exciting areas in pattern recognition. Because of the cursive nature of Persian language, recognition of its characters is more difficult than Latin or Chinese language. In this paper we propose a novel method to recognize the isolated characters of Persian language using decision tree based on structural features of characters. The system has been tested on a database including all letters of Persian language and a recognition rate of 90. 56% has been achieved. Our experimental recognition results are encouraging and confirm our expectation that the use of structural features is an interesting issue of Persian character recognition.
منابع مشابه
A New Decision Tree for Recognition of Persian Handwritten Characters
In this paper a binary decision tree, based on Neural Networks, Support Vector Machine and K-Nearest Neighbor is employed and presented for recognition of Persian handwritten isolated digits and characters. In the proposed method, a part of the training data is divided into two clustersusing a clustering algorithm, and this process continues until each subtree reaches clusters with optimum clus...
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملImprovement of Random Forest Classifier through Localization of Persian Handwritten OCR
The random forest (RF) classifier is an ensemble classifier derived from decision tree idea. However the parallel operations of several classifiers along with use of randomness in sample and feature selection has made the random forest a very strong classifier with accuracy rates comparable to most of currently used classifiers. Although, the use of random forest on handwritten digits has been ...
متن کاملA Novel Approach to Persian Online Hand Writing Recognition
Persian (Farsi) script is totally cursive and each character is written in several different forms depending on its former and later characters in the word. These complexities make automatic handwriting recognition of Persian a very hard problem and there are few contributions trying to work it out. This paper presents a novel practical approach to online recognition of Persian handwriting whic...
متن کامل